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Abstract. We consider a model (Lengyel-Epstein) reaction-diffusion system under spatial parametric mod-
ulation and demonstrate the effect of resonance shift of the Hopf-Turing boundary. A systematic pertur-
bative and numerical analysis shows that this shift may induce spatial inhomogeneity on an homogeneous
stable state resulting in pattern formation.

PACS. 82.40.Ck Pattern formation in reactions with diffusion, flow and heat transfer – 47.54.+r Pattern
selection; pattern formation – 87.10.+e General theory and mathematical aspects

1 Introduction

Pattern formation in two-dimensional reaction diffusion
systems has been the subject of wide renewed inter-
est over the last decade since the unambiguous exper-
imental demonstration of Turing patterns in the early
nineties [1–3]. Turing patterns affected by spatial inhomo-
geneities have been observed more recently in liquid crys-
tals [4], catalytic surface reactions [5], porous media [6],
biological self replication [7,8] and other systems [9]. The
formation of these patterns are due to the interplay of self
enhancement which causes local inhomogeneous growth
and a long range inhibition restricting the effect of rapid
diffusion. Turing patterns appear as symmetry breaking
spatial structures arising when a difference in diffusion
coefficients between the two species causes an initially ho-
mogeneous stable state to become unstable due to inho-
mogeneous perturbation. The homogeneous stable state
often corresponds to an oscillatory state arising out of a
Hopf bifurcation [10,11]. Hopf instability results in spa-
tially homogeneous temporal oscillations and its relation
to Turing instability is of great interest. Both instabil-
ities have been observed experimentally in the case of
the CIMA system through concentration variation of the
colour indicator in the reactor [12,13]. The interaction be-
tween these instabilities [14] may take place either through
a co-dimensional-two Turing-Hopf bifurcation, when the
corresponding bifurcation parameter threshold values are
equal [15,16] or due to different competing bifurcations
of multiple stationary states [12–17]. A region of specific
interest is the boundary between the associated Hopf (ho-
mogeneous oscillatory) region and the Turing (spatially
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periodic) region. The object of the present paper is to
show that an external spatial parametric resonance on a
reaction diffusion system may induce a transition from
Hopf to Turing region leading to initiation of stable pat-
tern formation. The spatial parametric modulations have
been studied earlier in the context of convective instabil-
ities in fluids [18–23] and quite extensively in a number
of chemical [25–30] and optical [31] systems. Special at-
tention has been paid to asymptotic states of Turing pat-
terns as well as on growth dynamics. Among the chemical
systems the photosensitivity of the CDIMA system offers
excellent opportunity in this context to study the effect of
spatiotemporal forcing which results in modulation and
control of Turing pattern. Spatial forcing using illumina-
tion through gray-scaled masks [25,27] is also used for re-
moving defects in order to produce ordered patterns [27].
Bearing in mind these experimental successes in forcing
CDIMA/CIMA system, it may be pointed out that while
the majority of the work focuses on controlling a devel-
oped Turing pattern by external forcing, it is worthwhile
to explore how an external spatial forcing can create a
pattern due to resonance in an otherwise homogeneous
state. Secondly in contrast to these earlier works where
the modulation is additive in nature we study the role
of multiplicative forcing in the system. Thirdly, although
the theoretical perturbative method has been determined
previously [18] it was incomplete primarily in some ways.
The Gierer-Meinhardt model and the variation of diffu-
sion coefficient as analyzed to study resonance effect were
theoretical and without any numerical support and are
thus difficult to comprehend in an experimental situa-
tion. The parametric space chosen in the Lengyel-Epstein
model in the present context is much more realistic and the
efficiency of the perturbation method can be well-tested
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numerically as well as by experiment. The photosensitivity
of the present chemical system can be utilized using illumi-
nation through masks with appropriate structure for peri-
odic spatial modulations. With this end in view we carry
out a systematic perturbation analysis of the problem to
investigate the shift of the Hopf-Turing boundary due to
a parametric resonance in a general perspective followed
by a numerical simulation to corroborate the result of our
perturbation analysis on Lengyel-Epstein model reaction-
diffusion system [24].

2 A perturbative analysis of parametric
resonance

To start with we consider a reaction diffusion system with
activator and inhibitor characterized by their concentra-
tions u and v, respectively as follows:

∂u

∂t
= ∇2u + f(u, v) (1)

∂v

∂t
= σ(d∇2v + bg(u, v)). (2)

Here f and g are the reaction terms. d refers to the
ratio of the diffusion coefficients of the two species d =
dv/du. σ is a scale parameter. b refers to a parameter to
be modulated spatially in the dynamics.

For spatial modulation of b we consider b = b̄0(1 +
ε cosKx) where ε is the amplitude of modulation around
the spatial mean b̄0. K refers to the wave number of the
modulation. ε is assumed to be small such that it can
be treated as a perturbation parameter. Furthermore it is
important to note that the appearance of b in the reac-
tion term is such that it does not affect the homogeneous
steady state u0, v0 of the reaction-diffusion system. Our
aim here is to investigate the shift in the boundary for the
formation of an inhomogeneous steady state. In the long
time limit the time evolution of the spatial distribution
leads to

∇2u + f(u, v) = 0 (3)
d∇2v + bg(u, v) = 0. (4)

With u = u0 + δu and v = v0 + δv, where δu and δv
are the perturbation around the steady state (u0, v0) we
obtain

−∇2δu = fuδu + fvδv (5)
−d∇2δv = b(guδu + gvδv). (6)

Here fu, fv and gu, gv terms correspond to partial
derivatives of the functions f or g with respect to the vari-
ables u or v evaluated at steady state (e.g., fu = ∂f

∂u |u=u0
).

We now expand the perturbations δu, δv in series in ε
along with b̄0 as δu = δu0 + εδu1 + ε2δu2 + ..., δv =
δv0 + εδv1 + ε2δv2 + ... and b̄0 = b0 + εb1 + ε2b2 + ... and

put them in equations (5) and (6), obtaining after rear-
ranging up to O(ε2),

L0

(
δu0

δv0

)
+ ε

[
L0

(
δu1

δv1

)

−
(

0
b1guδu0 + b1gvδv0 + (gub0δu0 + gvb0δv0) cosKx

)]

+ ε2
[
L0

(
δu2

δv2

)

−
(

0
b2guδu0+b2gvδv0+(gub0δu1+gvb0δv1) cosKx

)]
=0

(7)

where

L0 =

(−∇2 − fu −fv

−b0gu −d∇2 − b0gv

)
. (8)

In the low order (ε = 0) we have L0

(
δu0

δv0

)
= 0, so

that putting

δu0 = ¯δu0 cosK0x δv0 = ¯δv0 cosK0x (9)

we obtain
(K0

2 − fu) ¯δu0 = fv
¯δv0 (10)

and
−b0gu

¯δu0 + (dK0
2 − b0gv) ¯δv0 = 0. (11)

Equation (10) yields

¯δv0 =
(K0

2 − fu)
fv

¯δu0. (12)

For the perturbation of the order 0(ε) we have

L0

(
δu1

δv1

)
=

(
0

b1guδu0 + b1gvδv0 + (gub0δu0 + gvb0δv0) cosKx

)
.

(13)

Making use of (9) we rewrite (13) as

L0

(
δu1

δv1

)
=

(gu
¯δu0 + gv

¯δv0)
(

0
b1 cosK0x + b0 cosK0x cosKx

)
.

(14)

From equation (14) it is clear that provided K �= 2K0

it would be solvable if b1 = 0. For K = 2K0 we have

L0

(
δu1

δv1

)
= (gu

¯δu0 + gv
¯δv0)

×
(

0
(b1 + b0

2 ) cos (K − K0)x + b0
2 cos (K + K0)x

)
.

(15)
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Thus the removal of spurious resonances requires

b1 = −b0

2
. (16)

The boundary is thus shifted to bc = b̄0(1 + ε
2 ) under

resonance condition.
For K �= K0 we have to consider b1 = 0. Therefore

equation (14) reduces to

L0

(
δu1

δv1

)
=

b0

(
0

(gu
¯δu0 cosK0x + gv

¯δv0 cosK0x) cosKx

)
(17)

which using (12) can be rearranged further to obtain

L0

(
δu1

δv1

)
=b0

(
0

(gu + (K0
2−fu)
fv

gv) ¯δu0 cosK0x cosKx

)
.

(18)
Writing equation (18) more explicitly we have

(−∇2 − fu)δu1 − fvδv1 = 0 (19)

− b0guδu1 + (−d∇2 − b0gv)δv1 =
¯δu0b0

2

(
gu +

K0
2 − fu

fv
gv

)
(cos k+x + cos k−x) (20)

where k+ and k− are given by k+ = K + K0 and k− =
K − K0.

Assuming first order perturbation δu1 and δv1 to vary
as δu1 or δv1 ∼ cos k+x we have from equations (19)
and (20)

(k+
2 − fu)δu1 − fvδv1 = 0 (21)

− b0guδu1 + (dk+
2 − b0gv)δv1 =

¯δu0b0

2

(
gu +

K0
2 − fu

fv
gv

)
(cos k+x + cos k−x). (22)

The above algebraic equations can be solved to yield
for the contribution due to the k+ term,

δu1 =
¯δu0b0

2
(fvgu + (K0

2 − fu)gv)
∆+

cos k+x (23)

where ∆+ = (k+
2 − fu)(dk+

2 − b0gv) − b0gufv.
For the actual solution of δu1 we should incorporate

both the k+ and k− terms so that we have

δu1 =
¯δu0b0

2
[
fvgu +

(
K0

2 − fu

)
gv

] [
cos k+x

∆+
+

cos k−x

∆−

]

(24)
where ∆− = (k−2 − fu)(dk−2 − b0gv) − b0gufv.

Similarly one obtains

δv1 =
¯δu0b0

2

[
gu +

(K0
2 − fu)
fv

gv

]

×
[
(k+

2 − fu) cos k+x

∆+
+

(k−2 − fu) cos k−x

∆−

]
. (25)

Having obtained the perturbative corrections up to
O(ε) we look for the next order O(ε2). To this end we
start from

L0

(
δu2

δv2

)
=

(
0

b2guδu0 + b2gvδv0 + (gub0δu1 + gvb0δv1) cos Kx

)

+ non secular terms. (26)

Substituting the appropriate expressions for δu0, δv0,
δu1 and δv1 in the secular part of the right hand side of the
above equation we obtain the relevant non-zero element as

− b2

[
gu

¯δu0 + gv
¯δu0

(K0
2 − fu)
fv

]
cosK0x

− gu

2
b0

2 cosKx ¯δu0

[
fvgu +

(
K0

2 − fu

)
gv

]

×
[
cos k+x

∆+
+

cos k−x

∆−

]

− gvb0
2

2fv
cosKx ¯δu0

[
fvgu +

(
K0

2 − fu

)
gv

]

×
[
(k+

2 − fu) cos k+x

∆+
+

(k−2 − fu) cos k−x

∆−

]
... (27)

cosK0x containing terms of the above expression give rise
to the following relation

− b2

fv

(
gufv + gv

(
K0

2 − fu

)) ¯δu0

− gu

4
b0

2 ¯δu0

[
fvgu +

(
K0

2 − fu

)
gv

](
1

∆+
+

1
∆−

)

− gvb0
2

4fv

¯δu0

[
fvgu +

(
K0

2 − fu

)
gv

]

×
[
(k+

2 − fu)
∆+

+
(k−2 − fu)

∆−

]
= 0. (28)

The above equation yields b2 as

b2 = −b0
2

4

[
gufv

(
1

∆+
+

1
∆−

)

+gv

(
(k+

2 − fu)
∆+

+
(k−2 − fu)

∆−

)]
. (29)

The spatial modulation therefore shifts the boundary
under parametric resonance K = K0 as b = b0 + ε2b2 or
explicitly we obtain

b = b0

[
1 − ε2

b0

4

[
gufv

(
1

∆+
+

1
∆−

)

+gv

(
(k+

2 − fu)
∆+

+
(k−2 − fu)

∆−

)]]
. (30)

In what follows we now make use of the above relation
to determine the boundary of instability leading to pattern
formation under spatial parametric resonance.
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3 A model system and numerical analysis

In order to illustrate the above perturbative analysis we
now resort to a well known reaction-diffusion system, the
Lengyl-Epstein model for chlorite-iodide-malonic acid re-
action [24]. The typical equations in the two dimensional
domain are given by

∂u

∂t
= a − u − 4uv

1 + u2
+

∂2u

∂x2
+

∂2u

∂y2
(31)

∂v

∂t
= σb

(
u − uv

1 + u2

)
+ σd

(
∂2v

∂x2
+

∂2v

∂y2

)
. (32)

a, b and σ are dimensionless parameters containing kinetic
parameters and initial concentrations of the reactants.
The ratio of the diffusion coefficients d (=DClO2

−/DI−)
of the activator (ClO2

−) and inhibitor (I−) in the absence
of the complexing agent starch is related to the effective
ratio of the diffusion coefficients through σd. u(x, y, t) and
v(x, y, t) are normalized dimensionless concentrations of
the two reactants I− and ClO2

− respectively. The fixed
point of the dynamical system is given by uss = a

5 ,
vss = 1 + a2

25 . Thus the homogeneous steady state is in-
dependent of b, the critical parameter for studying para-
metric resonance in the present analysis. This well known
model has been used widely for the study of pattern forma-
tion over a decade. We fix the experimentally admissible
parameter values a = 16.0, b = 1.5 and d = 1.5 for our
treatment. The other important parameter σ (which can
be controlled experimentally by initial concentration of
starch) the complexing agent in the Lengyl-Epstein model,
plays an important part in determining the stability re-
gions. In the absence of diffusion and spatial modulation
the Hopf curve, below which one observes the stable os-
cillation, is given by

σb =
3a

5
− 25

a
. (33)

In Figure 1 we plot the Hopf curve (b vs. a) shown by
dashed line for σ = 5.6. The reaction-diffusion system in
the presence of diffusion on the other hand gives rise to
Turing bifurcation in the absence of spatial modulation if

(3da2 − 5ab − 125d)2 = 100abd(25 + a2). (34)

This curve is shown as a solid line in Figure 1 and is
independent of σ. The homogeneous stable steady state
is unstable below this line. Thus as one increases σ the
Hopf line shifts downwards gradually and once it crosses
the Turing line, instability leading to formation of pat-
tern arises. Spatial modulation of b under parametric res-
onance K = K0 however leads to a situation where the ap-
plied perturbation shifts the Turing boundary line above
the Hopf curve according to equation (30) (for the same
σ value for which no such instability arises in absence
of modulation). This results in a condition for pattern
formation under parametric resonance with ε = 0.5 and
K = 1.0. This is shown by the dotted line in Figure 1.
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Fig. 1. b vs. a curve for σ = 5.6 and d = 1.5 are shown where
the dashed line represents the Hopf bifurcation line (Eq. (33)),
solid line represents the Turing bifurcation line (Eq. (34)) and
the dotted line corresponds to the Turing bifurcation line under
spatial resonance of the parameter b where ε = 0.5 and K = 1.0
(Eq. (30)).

To realize this situation it is important to recall at this
point the experimental spatial modulation of earlier stud-
ies [23,29,30]. Since the scaled parameter b essentially
contains in addition to kinetic constants the initial con-
centration of iodine which is highly photosensitive, one
may envisage the possibility of modulating this initial con-
centration by illumination through appropriate masks as
I2 starts reacting in the system in a spatially distributed
manner. The mask, as we anticipate, should be designed as
a cosine function capable of varying b [= b0(1+cosKx)] in
the x-direction with wavelength K as 2π

λf
where the choice

of λf should be close to the wavelength associated with the
Turing pattern, for study of resonance pattern formation.
The control of b through photo illumination for spatial
modulation is multiplicative in nature since b appears in
equation (32) as a multiplicative kinetic term rather than
an additive term as employed before [25,27]. This differ-
ence, we believe, is nontrivial from a kinetic or dynamic
point of view so far as the effect of spatial modulation is
concerned.

For an analysis of pattern formation under paramet-
ric resonance the calculations are performed using equa-
tions (31) and (32) by the explicit Euler method on
a two dimensional grid 128 × 128 with grid spacings
�x = �y = 0.5 and time step �t = 0.0005 and zero
flux boundary condition. The simulations are started with
spatially random perturbation of ∼ 1% around the steady
state. The stationary patterns formed as shown in Fig-
ures 2–4 are highly sensitive to the value of perturbation
parameter ε. We observe numerically that with increase
of value of ε from 0.5 to 1.0 the spots go over to stripes
along x-direction for the same set of parameter values used
in Figure 1. The presence of parametric spatial modula-
tion tends to remove the nodal structure along this direc-
tion. The domain of instability as noted from theoretical
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Fig. 2. Stable spot pattern obtained for a = 16.0, b = 1.5,
d = 1.5 and σ = 5.6 when the spatial perturbation on b is
switched off.

Fig. 3. Stable pattern obtained for a = 16.0, b = 1.5, d = 1.5
and σ = 5.6 when the spatial perturbation on b is switched on.
Pattern with mixed stripes and spots obtained when spatial
perturbation parameter ε = 0.5.

Fig. 4. Stripe pattern obtained when spatial perturbation pa-
rameter ε = 1.0 and all other parameter values are same as in
Figure 3.

analysis of spatial perturbation is in accordance with nu-
merical simulation results. The stability of the numerical
results has been checked by using different space and time
steps.

4 Conclusion

We have analyzed a reaction-diffusion system driven by
spatial parametric modulation. It is shown that symme-
try breaking instability leading to the formation of spatial
structures may result, when the depth of modulation is
critically controlled in the Hopf region under appropriate
resonance conditions. The shift of the Turing bifurcation
boundary is calculated perturbatively and analyzed nu-
merically to study the formation of spatial patterns. In
view of several recent experiments with temporal and spa-
tial variation of light intensity, the spatial control of mod-
ulation in a chemical system where the parameters can be
experimentally controlled appears to be important in the
context of instability around the Hopf-Turing boundary
and related issues in reaction-diffusion systems.

Thanks are due to the CSIR, Govt. of India, for a
fellowship (SK) and for partial financial support (grant
No: 01/(1740)/02/EMR II).
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